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Ah&act--A design scheme of variable structure adaptive 
control for linear time-invariant system with uncertain 
dynamics is proposed. Both additive and multiplicative 
unmodeled dynamics are taken into consideration. The 
transfer function of the modeled part of the plant may have 
unstable zeros and unstable poles. A sign-following system 
and logic switchings are introduced into the control system. 
The global stability of the overall system is proved. 
Simulation results show the effectiveness of the proposed 
method. 

1. Introduction 
A model reference adaptive control (MRAC) scheme that 
can guarantee global asymptotic stability for systems without 
unstable zeros and unmodeled dynamics was proposed by 
Narendra and Valavari (1978) and Narendra er al. (1980). It 
is regarded as a landmark in the development of MRAC 
theory. However, Rohrs et al. (1985) showed that Narendra’s 
MRAC scheme cannot always guarantee global stability if 
unmodeled dynamics and bounded external disturbances are 
present. Since then, the problem of robustness of MRAC has 
received considerable attention. Many attempts have been 
made to enhance the robustness of MRAC by counteracting 
the effects of unmodeled dynamics and external disturbance. 
Many modified MRAC algorithms have been proposed. Thus 
far the main achievements are as follows. An approach for 
handing bounded external disturbances requires a reference 
input signal that has a sufficient range of frequencies for the 
measurement vector to be persistently exciting in order to 
achieve the robustness of the controller (see e.g. Kosut and 
Johnson, 1984; Kokotovic et al. 1985; Anderson et al., 1986; 
Narendra and Annaswamy, 1986, 1989; Sastry and Bodson, 
1989). The dead-zone method was introduced by Egardt 
(1980) to make MRAC systems less sensitive to unmodeled 
dynamics. This method was further developed by Kreissel- 
meier and Narendra (1982), Peterson and Narendra (1982), 
Samson (1983), Sastry (1984), Kreisselmeier and Anderson 
(1986) and others. The u-modification method was proposed 
and improved by Ioannou and Kokotovic (1984), Iannou 
(1986) Iannou and Taskalis (1986a), Ortega et al. (1987) and 
others. The idea of normalizing signals was introduced by 
Praly (1984, 1986), and was further studied and improved by 
Ioannou and K. S. Taskalis (1986b) and Tao and Ioannou 
(1991). Variable structure schemes were introduced into 
MRAC by Hsu and Costa (1989) Fu (1991, 1992) and Wu et 
al. (1992). These improvements simplify the ordinary MRAC 
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scheme. All these works attempt to improve the robustness 
of Narendra’s MRAC scheme by counteracting the 
unmodeled dynamics and external disturbances. 

Narendra’s MRAC scheme is generally used to deal with 
systems whose modeled part is of minimum phase. It is based 
upon the assumption that the adaptively tuned system can 
match perfectly with a reference model, i.e. there exists a 
procedure of controller parameterization that can make the 
closed-loop transfer function equal to the reference model in 
the absence of unmodeled dynamics. Unfortunately, for 
systems whose modeled part is of non-minimum phase, this 
requirement usually cannot be met. In general, the design of 
adaptive control for non-minimum-phase systems is full of 
trouble. In the above-mentioned literature, the minimum- 
phase condition is usually required for the modeled part of 
the plant. 

Morse (1990, 1992) provided a unified theory of parameter 
adaptive control. He pointed out that, for a linear stationary 
process, a properly designed certainty equivalence control 
results in a tunable closed-loop parameterized system. As a 
result of tunability, the closed-loop parameterized system can 
be stabilized according to the tunability theorem and the 
theorem of certainty equivalence output stabilization 
proposed in his paper. Then, based on this theory Morse et 
al. (1992) proposed a hysteresis switching algorithm for the 
parameter adaptive control. It was shown that this algorithm 
is applicable to a large group of linear processes where the 
relative degree of their transfer functions and the sign of 
high-frequency gain may be unknown. As shown in Morse 
(1992) in order to ensure the global stability of the overall 
system, the closed-loop parameterized system should be 
tunable. It was shown (Morse et al., 1992) that if the plant is 
a minimum-phase system, the closed-loop parameterized 
system will be ‘tunable’. But, it is not clear whether a 
non-minimum-phase system or not is ‘tunable’. 

From the above discussion, we can see that the problem of 
adaptive control is still open for uncertain dynamic systems 
whose modeled part is of non-minimum phase. 

Studies by Utkin (1977, 1987) have shown that variable 
structure control systems are insensitive to parameter 
perturbations and external disturbances. This inspires us to 
use logic switching to enhance the robustness of adaptive 
control. Feng (1986) introduced a sign-following system 
(SFS) into MRAC design. MRAC schemes can be further 
simplified by using SFS, and the robustness is greatly 
improved. This kind of SFS switching will also be used in the 
design scheme proposed in this paper. 

In this paper, a design scheme of adaptive control with 
variable structure is presented for systems with unmodeled 
dynamics. The transfer function of the modeled part of the 
plant may have unstabIe zeros and unstable poles. The 
relative degree of the modeled part of the plant may be equal 
to or greater than one. The sign of the high-frequency gain 
may also be unknown. Thus the systems under study are 
uncertain dynamic systems in a very general sense. SFS and 
proper logic switchings are used in the control system to 
guarantee global stability. 
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2. System description 
Consider a single-input, single-output (SISO) linear 

time-invariant plant with additive and multiplicative un- 
modeled dynamics as described by the equation 

Y& = mu =P&)[I + pA,(s)lr@) + ~Az(s)u(f), 

(1) 

where p(s) is strictly proper, p&r) is the transfer function of 
the modeled part of the plant, p,(s) = ~~~~~~(s)~~‘~~) and 
PA,(S) and ,uAz(s) are the additive and multiplicative 
perturbations respectively. Without loss of generality, let us 
assume that p is a positive number. For this plant we shall 
make the following assumptions: 

(Al) p,(s) is a strictly proper transfer function; Q,(s) and 
N,,(s) are manic polynomials of degrees n and m: 

(A2) the system order n is known. but the relative degree 
n* = n - m and the sign of the high-frequency gain k. 
may be unknown: 

(A3) At(s) is stable: it may be not proper if n* = n - m > I: 

(A4f A,(s) is a stable operator with relative degree greater 
than one: 

(AS) a lower bound St > 0 on the stability margin 4, > 0 for 
which the poles of A,@ X 4,) and A& - 9,) are stable 
is known: 

(A6) the impulse response functions h,(t) and h,(t) of 
(s + q)~“*+‘A,(s) and (s + ~)A~(.~~ satisfy the condition 

llh,(r)ll, = j lP,(z)ldf-rk’. i = 1.2, 
0 

where 9 > 0, and K is a certain positive constant. 

Remark 2.1. It is noteworthy that in the above assumptions, 
the modeled part p&) of the plant may have unstable zeros. 
This is different from the usual assumptions made for 
ordinary MRAC (i.e. in Narendra and Annaswamy, 1986: 
Ioannou and Tsakalis. l986a, etc.). 

Remark 2.2. Assumptioll (A3) implies that a small p will 
lead to a small l&A&+)/ in the low-frequency range. 
However, since A,(s) may be non-proper if n* =n -m > 1, 
ipA, may be large in the high-frequency range (Ioannou 
and Tsakalis, 1986a). In this paper, we shall assume that the 
relative degree of the transfer function [N&)/&,(s)]A,(s) is 
greater than one. 

In this paper, the variable structure adaptive control 
problem is briefly stated as follows. Given a reference model 

k&&1 
y,(r) == W&P(t) = D,(s) ~ r(t), (2) 

where D,,,(s) is a manic Hurwitz polynomial of degree n. 
N,(s) is a manic polynomial with degree less than n, and r(t) 
is an arbitrary uniformly bounded and piecewisely- 
continuous external input signal. Design a suitable adaptive 
control law for the system (1) under the conditions 
(Al)-(A6), so that for some IL* >O and any p E [0, p*), the 
overall system is stabilized and the plant output y<,(t) will 
track the output y,,(t) of the system (2) as closely as possible 
in spite of the existence of unmodeled dynamics A,(s) and 
A&) that satisfy assumptions (A3)-(A6). 

In this paper. the basic control scheme is different from 
that in Narendra and Valavani (1978) and Narendra et al. 
(1980). The main difference between the usual MRAC 
schemes and ours is the use of a sign-following system and 

logic switchings. In the following sections, we shall present 
the design scheme of the variable structure adaptive control, 
and analyze its stabitity and performance. 

3. Design of variable structure adaptive controller 
The main points of the adaptive variable structure are as 

foIlows. 

(i) 

(ii) 

(iii) 

An auxiliary error model is introduced. The general 
representation of the MRAC system proposed by 
Narendra and Valavani (1978) with an observer-type 
compensator is used to guarantee Lz boundedness for 
the augmented error consisting of the auxiliary error 
and tracking error. 

A sign-following system (SFS) is introduced, in which a 
minimum-phase model for sign comparison is used. 
Based on this minimum-phase model. the effect of 
non-minimum phase of the controlfed plant can be 
extracted and used to improve our adaptive control 
algorithm. That is why a non-minimum-phase plant can 
be successfully controlled. 

The control system is constructed in two hierarchies. 
First, a switching region is established, and variable 
structure sliding mode control is used outside this region 
to drive the state variables into the switching region. 
Secondly, inside this region, the normal variable 
structure adaptive control (VSAC) with a SFS is 
adopted. 

Now let us explain the design of the controller in detail. 
It will be more convenient for our design if the relative 

degree of the modeled part of the plant to be controlled is 
equal to one. If the relative degree is greater than one, we 
can use the following operations to make it equal to one. Let 
us define 

where /3 is a proper positive constant. Transform the model 
(l)-(3) to the form 

Y&) = (s + p)Q,(s) 
koNo(s) [I + pA,(s)]U(t) 

Define 

Y(f) = Y&J t-Y,(f). (6) 

Then. from (4)-(6). 

Now the modeled part in (7) is [koNO(s) + &(s)]/[(s +fi) 
DO(s)]_ Its relative degree and gain are equal to one. If G(t) 
and y(r) are guaranteed to be bounded then, from (5) and 
(6). we know that y,(t) and y<)(r) are also bounded. 

From the above discussion, without loss of generality, we 
can still use (1) by assuming that the relative degree of 
N,,(s)/&(s) is equal to 1 and that kc)= 1. If the global 
stability is guaranteed for the system (7) then, from (4) and 
(S), we can conclude that the system (4) is also globally 
stable. 

Let us first deduce the error equation. Define 

R(s) 2 D,(s) - Q,(s). (8) 

Since D,,,(s) and D,,(s) are manic polynomials of order n, 
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R(s) is a polynomial of order at most n - 1. Substituting (8) 
into (l), we have 

ye(r) = N,(s) R(s) d’o(s) - - 
Dm(s) ‘(‘I + D,,,(s) ye(r) + Dm(s) Ah)u(r) 

Go(s) 
+ m &(s)u(r). 

m 
(9) 

Operating both sides of (9) with s + (Y, we have 

jo(r) = -aye(r) + ts +gol;yu(r) + ts ~;syyu(r) 
m m 

+ r-4 + aP’o(s) /J’o(s) 
Q&) 

W)uW + -(s + ~)A~(s)u(r), 
Qd) 

where a is a proper positive constant. Denote 

d(r) B ~4s + aPo(s) 
kds) 

A,(s)u(t) + e(s + ~~)A~(s)u(t). 
m 

(11) 

Then (10) is simplified as follows: 

j”(f) = -aye(r) + 6 my% + 6 ;;y 
Ills ms 

x Yo(O + d(r). (12) 

Since No(s) is assumed to be a manic polynomial of order 
n - 1, we obtain 

(s + a)No(s) 
Qn(s) 

u(r) = u(r) + ts + (y)NO@) - Dm(s) u(r) 

&(s) 

where [(s + t~)N,(s) - D,,,(s)]/DJs) is still strictly proper. 
We can write {[(s + (Y)N~(s) - D,(s)]/D,,,(s)}u(r) and [(s + 
a)R(s)/Dm(s)]yo(r) in their state-space realizations as 

vt = Ax + bu(r), 

i = AZ + bye(r), 

(s + a)No(s) - D,(s) 

Dds) 
u(r) = @x(r), 

(s + a)R(s) 
D (s) Y”(r) = e%(r) + e,Yo(r)? 

m 

A= 

0 1 0 . 0 

0 0 1 0 
. . . . . . . . . . . 
0 0 0 . 1 

-aI -a2 -a, . . . -a, 

b = [0 0 . i 0 21T. 

(13) 

(14) 

Here the CY: (i = 1,2,. . , n) are the coefficients of the 
known polynomial D,,,(s) = s” + a,$- + + a,. 0, is 
formed by the coefficients of the polynomial :[(s + 
cr)N,(s) - D,(s)]. Bz is formed by the coefficients of the 
polynomial $[(s + cr)R(s) - &D,(s)], where 6s is the 
coefficient of the term s”-’ in R(s). .9,, 0, and 0, are 
unknown, but x(t) and z(t) are measurable. Substituting (13) 
into (12), we obtain 

)io(r) = -cv~(~) + u(t) + eTx(t) + e:z(q + e,ydt) + d(t). 

(15) 

Define the tracking error as 

e,(t) g ydr) - y,(r). (16) 

From (2) and (16), the following equation for the error e,,(r) 
can be obtained: 

to(r) = -cte,(t) + u(r) + eTx(t) + eIz(r) 
+ e,m - (S + 4wmww + 40. (17) 

In the sequel, an auxiliary error signal e,(t) is introduced, 
satisfying the equation 

c,(t) = -se,(t) + u(r), (18) 

where u(r) will be defined later. Define an augmented error 

Co(t) p c,(r) - e&), (19) 

and choose u(t) to make Z$(t) as small as possible. Therefore 
we may take 

u(r) = n(r) + eT(t)r(t) f eT(r)z(r) + 6s(r)yo(r) 

- F sgn [G(t)1 m(t) - 0 + aFds)rW, (20) 

where O,(r), O,(r) and O,(r) are adjusted according to the 
rules 

h(r) = -r,x(r)e;,(r), 

e*(r) = -r,~(r)e,,(r), (21) 

k(r) = -Y3Yo(r)eo(r), 

where I, and Tz are positive-definite matrices and -yX is a 
positive constant. F is an appropriate small positive constant, 
and m(r) is a normalized signal obtained from the control 
signal u(t) in the form 

h(f) = -ml(r) + (u(t)l, m(0) > 0, (22) 

where 0 < (T < min (4, / Re Aj(D,,,(s))l}. It was proved by 
Ioannou and Tsakalis (1986a) that there exists a positive 
constant p* such that when 05 F 5 CL* the following 
inequality holds: 

IV@)1 < @m(t). (23) 

Denote ai A e,(r) - fl,, i = 1, 2, 3. Then, from (17)-(20) 

C,(r) = -se,,(r) + @(r)x(r) + @(r)z(r) 

+ &(r)ydr) - CL sgn [G(t)1 40 - 49. (24) 

Now if e,(r) is bounded and small and the control system is 
designed using (18)-(20) so that e,(t) is bounded and 
sufficiently small then the tracking error co(t) will also be 
sufficiently small and bounded. Actually, we can prove that 
4,(t) is small. Take the following positive definite function 
as Liapunov function: 

v,(r) = &$(t) + :@(t)r;@(t) + :@(t)r;91(t) + :@g. 
(25) 

Then, from (23) and (24) 

V,(r) 5 -aFgr). 

Integration of (26) yields 

(26) 

a 
I 

‘?;(r)dr+ V,(r)C:V,(O). 
0 

This means Co(r) E L1. From the above discussion, we see 
that if ei(t) is actually bounded and small then the tracking 
error will be bounded and small. Therefore in the rest of this 
paper, we can use e,(t) defined by (18) instead of the 
tracking error e,(r) in the design of control laws. 

Substituting (20) into (18) we have 

t,(r) = -exe,(r) + u(r) + e:(t)x(t) + eT(r)z(r) + e,(r)Y,(r) 

- p sgn [Co(t)] m(r) - (s + a)W,(s)r(t). (27) 

In (13), 
f = Ax + bu(r), 

i = AZ + by”(r). (28) 

Now (27) together with (28) form a time-varying nonlinear 
system. Its parameters and signals are measurable. They will 
be used for the design of a variable structure adaptive 
controller. 



564 Brief Papers 

The control system is constructed in two hierarchies. First, 
a variable structure sliding-mode control is used to drive the 
system state variables .r(t) and e,(r) into a band region Sz. 
Then, inside the band region, another variable structure 
adaptive control law with SFS is proposed to make the 
system state variables r(t) and e,(t) bounded and small. 
Detailed explanations of the SFS will be given later. 

Take the switching surface as 

S = C’X + e,, (29) 

where cr= [ci cz . c,_, I]’ is formed from the 
coefficients of manic Hurwitz polynomial C(s) = 3”-’ + 
c,,-is “-2+...+C,. Take a border region R in the 
neighborhood of the switching surface S = 0 with width 6, i.e. 
)SI 5 S, where S is a small positive constant. Let us first 
explain how the variable structure control to be used outside 
of the band region is designed. In this case, /S( > 6. Take 

s = -k, sgn S -k& (30) 

where k, and k2 are positive. We have S,$ = -k, IS/ -k2S2. 
This means that the sliding surface is reachable (see Utkin, 
1977). and x(t) and e,(r) will reach the border region n in 
finite time. From (27) and (28), 

s = cTAx(r) + 3u(r) - eye,(r) + ~~(r).~(r) + @(r)z(r) + ~~(r)y~~(r) 

-ji sgn [E&)]m(t) - (s f ff)W~(~~~(t). 

From (30), the sliding mode control is taken to be 

u(t) = f{-cTAx(r) + cxel(r) - @T(t)x(r) -- 6’$(t)z(t) - &(r)r,,(t) 

+ f% sgn [&,(r)J nr(t) + (s + cr)W,(s)r(t) 

- k, sgn S - k2S}. (31) 

According to the selection of this control law, we can be sure 
that once x(t) and e,(t) enter the region Q, they will stay 
inside. 

Next, let us study how the controller law is designed inside 
the border region R. The control process inside the region Q 
is rather complicated. The main point of this scheme is the 
introduction of SFS. A minimum-phase model C(~)/~~(s) is 
used for sign comparison. The sign of the output of this 
model, [C(s)/D,(s)]u(r) = cTx(t), is compared with the sign 
of the error e,(t), and a logic switching function 4(r) is 
formed and introduced into the control. 

Take 4(ro) = sgn [e,(r,,)c%(t,,)] at the initial instant lo if 
e,(rtt)cTx(t~J # 0. If e,(r,,)cTx(r,,) = 0 then take @(&if = 1. 
Assume that fr. (k = 0, 1.2,. .) is the switching instant, and 
take #(t) = sgn [e,(rn)cTx(f,)]. Define a piecewise- 
continuous function 

where 

&(I) = 
n(t) if n(t)5 El,, 

Ftl if v(r) > &(I. 

ri(ff = :a. r’ ic’l(r) + &(z)c,(r), dr. (32) 
JP 

and E,) is a properly small positive constant. When t > tk, if 
Iel( < I or IcTx(r)/ < I, we take 4(r) = 4(tk). If, at a . 
certain ttme Instant r;,,, we have le,(r;+,)l z~(r;+~) and 
IcT~(t~+ii)t~&~+il and sgn[e,(r;+,)cTx(t;+I)l= -4Od 
then &(r) changes sign at r;,,. Define &+i =t;+,: then 
&(tk+,) = -#(tk) and b(r) = #(rA) when t E [Q. ti; i 1). When 
I B tk +, , the above procedure is repeated. 

The loeic switchine defined above is a kind of logic 
switching -with a variable hysteresis. This hysteresis depends 
on the magnitude of the error e,(f), x(r) and the chosen 
value of Ed,. The smaller is co. the faster 4(r) changes its sign, 
and it will be more effective for reducing the tracking error. 
But the frequency of chattering will be higher. The purpose 
of the defined &(r) is to make the sign of the output of the 
SFS follow the sign of the tracking error with sufficient 
speed; meanwhile. stiff switching is avoided so that the 
frequency of the chattering may be reduced. 

Next, let us explain how to design the control law. 

Define 

G(t) 4x,(r) + cb(t)et(G (33) 

here x,,(t) is the 8th com~nent of the state variable x(t). In 
the interval [a, tk+,), from (27) and (28), we have 

f, =x2(t), 

i’z =x3(t), 

.ki = &jF,(t) - #(r)e,(f~, 
Z_(t) = -atxr(t) -. . - a&&) + (~2~ - a)#(~)e,(f) 

(34) 

+ [2 + 4~mw + wmr~xw + wMr)zw 

+ d~WMrhdr) - 44% w k%Wl m(r) 

- cb(r)@ + ~w&)4). 

Denote Z(t) = [x,(t) . x,,_,(t) &&)lT e [x:(t) .F&)]‘. TO 
make a state-space transformation for the system (34), let us 
define 

[fT(f) e,(t)JT 2 E(t), (35) 

where the matrix T is 

In the new coordinate system, we have 

2, = xa(t), 

-ez =.r&), 

(36) 
i,_, = -c+,(t) -. . -c,-,~,-~(r) + e,(t) - &(t)el(t), 

e,(r) = amen(t) + [2 + 4OM) 

+ Ad,(r) + (a, - Q - c,-l)4(r)elW 

+ ~(r)e~(~)x(r) + 4wm‘(t)z(r) f #(r)~~(r)Y~(t) 

- (t)(t)@ + ff)W~(~)~(f) - #(t& sgn IG(tflm(0~ (37) 

whereA,,,g[p, & . . P,_,IT.HerePi(i=1,2,...,n-1) 
and an,, are obtained from the calculation by using (34) and 
(35). They are constant and known, since T and c are known, 
and they are not related to a. The polynomial C(s) = 
s”-’ + c,_,s”-z+. . + c, is Hurwitzian. Hence, from (36). it 
is easy to show that boundedness of e,(r) and e,(r) leads to 
boundedness of x,(t), .ra(t), . . , , x,_,(t) in (36). ~eanwhIile 
from (33) and (35)we have 

e,(r) = cTx(t) + d(t)e,(r). (38) 

According to the definition of (a(r), the boundedness of e,(t) 
leads to the boundedness of cTx(t) and e,(f). Therefore we 
have to select u(r) in (37) to make e,(t) bounded. Let 
define u(t) as 

us 

u(r) = &{-A&(t) - ( a, -a -cn-MMd 

- cb(WTW-w - mmt)z(r) - 4Mw)Yo(o 
+ (P(t)6 + a)W,(s)r(O + duct w k%OlW 
- aem - kf sgn k,Atfll. (39) 

Here a,,, Alo, a,, a, ii and k, are known. (P(f), @df), f%(f), 
e,(r), m(t), r(r), edt), ydt), x&f, e,(f) and G(t) are 
measurable. Substituting (39) into (37), we have 

6(r) = -(a + a,&&) - kl w M~)l. W) 

Since a,, is not related to CY, we can select cr such that 
(I +a,, 1 $a. This means that e*(f) will decay 
exponentially. 

Now the design of the VSAC with SFS is complete. 
In this section, we have discussed the controller design as a 

whole. We shall proceed to analyse closed-loop stability with 
our control laws. 
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4. Stability analysis 
First let us show that u(t) is bounded when the state 

variable x(t) and e,(t) are outside the border region Q. From 
(31) and (39), we know that u(t) is not a continuous function. 
But, from (27) and (28), we know that q(t) and cTx(t) are 
continuous. Beginning with t = 0, let us assume that, after to, 
the e,(t) and x(t) are forced into the region fJ using the 
control law defined by (31). Since to is limited, x(t), q(t) and 
ye(t) in [0, to) are bounded. Since @(t) (i = 1,2,3) and r(t) are 
bounded, from (31), we can rewrite (31) as 

u(t) p f/i sgn MO1 m(t) + g(t), 
g(t) = f[--CTAW + w(t) - @T(t)x(d - @(t)z(t) - Whdt) 

+ (s + a)W,(s)r(t) - k, sgn S - krS], (41) 

where g(t) is bounded for t E [0, to). From (22), we have 

h(t) = -m(t) + I!+ sgn [Zoo(t)1 m(t) + g(r) 

s (-o + f/%(t) + Ig(t)l. (42) 

Since u > 0 and + is sufficiently small, we take -CT + fF < 0. 
Therefore, from (42), we know that m(t) is bounded. Finally, 
we conclude from (41) that u(t) is bounded in the interval 
]O, to). 

Now we shall reform a stability analysis of the system 
when x(t) and e,(t) are within the border region R. First, let 
us consider the case where the time interval [tk, tk+J 
(k = 0, 1,2,. . .) is not zero. We then have U [tk, tk+,) = 
[to, m). In the interval [tk, tk+,), 4(t) remains either 1 or -1. 
For the interval [tk, tk+,), we shall take the Liapunov 
function as 

l%(t)) = le.(t)1 = lcTx(t) + 4Wdt)l. (43) 

Since the sign of 4(t) does not change in [tk, tk+l), 
cTx(t) + e,(t) is differentiable. In the interval [tk, tk+,), from 
(40), we have 

t+,(t)) = -(a + a,,) lW)l-h, t E h h+d. (49 

Here, the points where V(e,,(t)) = 0, the differentiation may 
be taken from left or right. That is to say, in the interval 
[tk, tk+i), we have 

I%(r)) - v@,(Q) 5 -$a 1’ P,,(r)1 dr. 
tk 

Defimng V(e,,(tk+, - 0) p lim,.+~+, t%(t)) (tk <t < tk+dr 
we have 

V(e&+r - 0)) + :a I”” le,,(f)l drs V(e,(td). (45) 
*II 

This implies that V(e,,(t)) has been reduced by 
fa fi;+l le,(r)ldr at least during the interval [tk, tk+,). 
According to the above definition of the switching function 
$(t), V(e.(t)) will have a maximum possible jump of 
.e@+,) I la Q+l le,(r)l dr at tk+,. From (45), we have 

V(e,(tk+r - 0)) + e(tk+J 5 V(e&)), 

V(e&+i)) c: V(e&)) (k = 0, 1,2, . . .). 
(6) 

The curve of V(t) is depicted in Fig. 1. 
From the above analysis, we can see that e,,(t) is bounded 

in the interval [to, m). From the definitions of e,,(t) and g(t), 
we have 

lcTW 5 len( + eel IedOl~ lW)l + ~0. (47) 

Hence the boundedness of e,(t) and cTx(t) is obtained from 

I 
0 to 

- t 
II t2 t3 

Fig. 1. Liapunov function V(t). 

the boundedness of e,,(t). According to (36) and (37), the 
boundedness of cl(t) and e,(t) implies that xl(t), as well as 
x,(t), is also bounded. With a similar argument for (41), the 
control signal within the region of R can be written as 

u(t) = & Izw w [~oO)l m(t) +m tw 
where f(t) is a certain bounded function obtained from (39). 
By an analysis similar to that for ISI > 8, we can show that 
u(t) is also bounded in the case ISI < 6. 

If the interval [t,, tj+l) approaches zero for a certain 
number j, and 4(t) changes its sign at an extremely high rate, 
we shall show that our control system can still work well. 
Actually, by the definition of 4(t), we have cT.r($) = 0 or 
el(tj) = 0. But, in the region Q we have 

le,(t) + cTx(t)l < 6. (49) 

Now, if high-frequency chattering occurs at tj then el(tj) = 0 
or cTx(t,) = 0. Hence Iel( < 6 and lcTx(t,)l < 6 can still be 
ensured. Furthermore, from (49), we have 

Iel( < 26, IcTx(t)l <2& t E [Ij> tj+l). (50) 

That means that e,(t) and cTx(t) remain bounded, even 
though high-frequency chattering happens. From (36), we 
can see that boundedness of cTx(t) leads to boundedness of 
x,(t), x2(t), . . , ~,,_~(t). ye(t) is bounded if e,(t) is bounded. 
Finally, we can conclude that u(t) defined by (39) is always 
bounded. 

Now let us analyse the motion along the switching surface 
ISI = 6 in detail. In Fig. 2, we show the possible path of 
motion along the boundary of region Q. At instant So > 0, the 
moving point reaches the boundary of Q. Without loss of 
generality, we assume S r 8. Then cTx(To) + el(To) = 8. In 
the region S > 0, we have S > 0. i.e. 

i,(t) + cTi(t) < 0. 

This shows that e,(t) and cTx(t) cannot enter the region 
IS1 > 6. 

Since in the region Q, (40) is valid and +(t) = -1, as 
shown in Fig. 2, we have 

E&(t) = cTi(t) -i,(t) 

that is, 
= -acTx(t) + me,(t) -/cl sgn [e,(t)] >O, (51) 

cTi(t) > t,(t) - k, sgn [e,(t)] > f?,(t). (52) 

This shows that the change of cTx(t) is faster than that of 
e,(t). Therefore cTx(t) and e,(t) can move along the solid 
line and not along the dotted arrows, as shown in Fig. 2. In 
fact, suppose the moving point did move along the dotted 
arrows. Then cTi(t) <i,(t) < 0 or cTi(t) < 0 < tl(t). This 
contradicts the form (52). From (30) and (40) we shall have 

lcT+l + IWI < IcTWO)l + lkdf0k 

hence the moving point tends to go to the origin. The state 
variables x(t) and e,(t) are always bounded. Boundedness of 
the state variables implies boundedness of the control signal. 
The above analysis shows that once the moving point enters 

Fig. 2. Motion along the switching surface. 
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Fig. 3. Control signal u(t). 

the region Q, the VSAC with SFS will reduce jcr.x(r)l + [e,(t)1 
as deduced before. Thus the stability of the overall system is 
proved. 

We should like to emphasize the following points: the 
control law defined by (31) is used to drive x(t) and e,(t) into 
the region Q in a finite time interval. Once .x(t) and ei(t) 
have been forced into the region R, they will stay in it. Inside 
R, all the signals are made bounded and small by the VSAC 
with SFS. 

We can summarize the above analysis in the following 
theorem. 

Theorem 4.1. For the system (l), if the assumptions 
(Al)-(A6) are satisfied, the switching surface S is selected 
according to (29), the control laws are defined by (31) in the 
region lSl> 6 and by (39) in the region IS1 5 6 and the logic 
switching function d(r) is defined as in Section 3 then there 
exists a positive I.L* such that, for 1~1 <CL*, all the signals in 
the system are globally bounded and the system is globally 
stable. 

5. Simulation results 
In this section, we shall present some simulation results to 

illustrate the effectiveness of the variable structure robust 
adaptive control scheme given in Section 3. The plant to be 
controlled is expressed by 

ye(t) =p&)]l + &(s)IU(r) + /.Us)U(r)> (53) 

where 

(s - 2)(s + 1) 
f-G) = (s + 5)(s + 3)(s - 1)’ 

1 
Ai(s) =s + 10’ 

1 
Us) = (s + 3)(s + IO), /L = 0.02. 

The reference model is chosen to be 

1 
Ydt) = cs + lyys + 2) r(t), r(t) = 3 cos 5t 

In the control law (31) and (39) let cT= [l 2 11, k, = 5, 
kz=2, 6=0.4, a=2, b=O.O5 and ~=0.8. In the 
adaptation rules (21), I, = Iz = I and y3 = 1. The simulation 
results are shown in Figs 3-5. 

-31 I 

il 2 4 6 

Fig. 4. Tracking error e,,(t). 

-0.5 
0 2 4 6 

Fig. 5. Auxiliary error e,(r). 

6. Conclusions 
In this paper, we have presented a new variable structure 

robust model reference adaptive control scheme for linear 
time-invariant single-input, single-output systems when the 
relative degree of the modeled part of the plant is equal to or 
greater than one. Both additive and multiplicative un- 
modeled dynamics have been taken into consideration. Here 
the restriction of the minimum-phase condition is not 
necessary. The main idea of our present scheme is that the 
variable structure logic control and the sign-following system 
are introduced into the design of the control system. The 
algorithm presented in this paper provides an effective 
solution to a long-standing problem in which the modeled 
part of the plant is of non-minimum phase. The boundedness 
of all signals in the closed-loop system is guaranteed, and 
global stability and convergence are established. Though the 
control law proposed in this paper is for the case where the 
relative degree of modeled part of the plant is equal to one, 
similar results can be obtained for the more general case. 
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